US009189271B2

a2 United States Patent

Kruglick

US 9,189,271 B2
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)
(73)

")

@

(22)
(86)

87

(65)

(1)

(52)

(58)

OPERATION TRANSFER FROM AN ORIGIN
VIRTUAL MACHINE TO A DESTINATION
VIRTUAL MACHINE WHILE CONTINUE
THE EXECUTION OF THE OPERATION ON
THE ORIGIN VIRTUAL MACHINE
Inventor: Ezekiel Kruglick, Poway, CA (US)
Assignee: Empire Technology Development,
LLC, Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 667 days.

Appl. No.: 13/497,529

PCT Filed: Sep. 13,2011

PCT No.: PCT/US2011/051387

§371 (D),

(2), (4) Date: Mar. 21,2012

PCT Pub. No.. WO2013/147777
PCT Pub. Date: Oct. 3, 2013

Prior Publication Data

US 2013/0067471 Al Mar. 14, 2013

Int. Cl1.

GO6F 9/455 (2006.01)

GO6F 9/48 (2006.01)

U.S. CL

CPC ... GOG6F 9/4856 (2013.01); GO6F 9/45558

(2013.01); GO6F 2009/4557 (2013.01)
Field of Classification Search

CPC oo, GOGF 9/45558; GOGF 9/4856; GOGF
2009/4557
USPC oo, 718/1; 711/203, 207, E12.058,

711/E12.065; 811/206
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,392,317

8,458,284

8,458,696
2007/0277021
2008/0222375
2008/0222633
2009/0070760
2009/0119493
2009/0150864
2009/0300604
2010/0070725
2010/0153617
2010/0318608
2011/0066597
2011/0179415

B2
B2 *
B2 *
Al
Al*
Al*
Al
Al
Al
Al*
Al
Al
Al
Al*
Al*

6/2008
6/2013
6/2013
11/2007
9/2008
9/2008
3/2009
5/2009
6/2009
12/2009
3/2010
6/2010
12/2010
3/2011
7/2011

(Continued)

Halpern

Huang etal. 709/213
Park etal.ccoooecvivirnnnnne 718/1
O’Connor et al.
Kotsovinos et al.
Kami
Khatri et al.
Venkitachalam et al.
Meijer et al.
Barringer
Prahlad et al.

Miroshnichenko

Huang et al.

Mashtizadeh et al. 707/640
Donnellan et al. 718/1

.......... 711/162
718/1

717/178

FOREIGN PATENT DOCUMENTS

KR 10-2010-0123847 A 11/2010

OTHER PUBLICATIONS

United States Patent and Trademark Office, International search
report and written opinion of the international searching authority,
mailed on Jan. 6, 2012.

(Continued)

Primary Examiner — Meng An
Assistant Examiner — Abu Ghaffari

(57) ABSTRACT

Technologies and implementations for transferring operation
from an origin virtual machine to a destination virtual
machine while the origin virtual machine continues to
execute an origin executable are generally disclosed.

19 Claims, 7 Drawing Sheets

Origin
Compiler
203

r-'——252 r——— 254
| 1 \
Uncompiled == Origin =— Destination
Code == Painters Index == Poainters Index
200 = 242 = 244
262~

=

/

222

Origin
Executabl,
c212

Destination
Executable|

Destination
Pointer
Index
Modulc

1

=

LTI TR

!

ion
Compiller

N
B
(0]

(IR EEAE

T T

&

]

Nzz2 2\0 " 234

US 9,189,271 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0254862 Al* 10/2012 Dongccvveievvniinns 718/1
2014/0189816 Al 7/2014 Halperin et al.

OTHER PUBLICATIONS

Voorsluys, William, et al., Cost of virtual machine live migration in
clouds: a performance evaluation, accessed online on Jan. 25, 2012
via cloudbus.org/reports/ VM-Migration-Cloud2009.pdf.

Amazon Web Services, Running high-CPU or high-memory appli-
cations on AWS elastic beanstalk, Amazon Web Services, Jan. 28,
2011 via aws.amazon.com/articles/6556616855019735.

Desrocher, Jonathan, Adding resources (resizing) an AWS EC2
instance, CloudStacking, Aug. 9, 2010 via cloudstacking.com/
p=478.

Brutlag, Jake, Speed matters, Research Blog, Jun. 23, 2009 via
googleresearch.blogspot.com/2009/06/speed-matters.html.

Shimpi, Anand Lal, Intel plans on bringing atom to servers in 2012,
20W SNC Xeons in 2011, AnandTech, Mar. 15, 2011 via anandtech.
com/show/4222/intel-plans-on-bringing-atom-to-servers-in-2012-
20w-snb-xeons-in-2011.

Bradford, Robert, et al., Live wide-area migration of virtual machines
including local persistent state, Proceedings of the 3rd international
conference on Virtual execution environments, Jun. 13-15, 2007,
169-179, ACM, New York, NY, USA.

Warfield, Andrew, et al., Facilitating the development of soft devices,
2005 USENIX annual technical conference, 2005, 379-382,
USENIX Association, Berkeley, CA, USA.

Perkins, C., IP encapsulation within IP, RFC 2003, Oct. 1996 via
http://www.ietf.org/rfc/rfc2003 .txt.

Wellington, B., Secure domain name system (DNS) dynamic update,
RFC 3007, Nov. 2000 via ietf.org/rfc/rfc3007 txt.

Amazon Web Services, Amazon EC2 pricing, Amazon web services,
Mar. 24, 2011 via amazon.com/ec2/pricing/.

Amazon Web Services, Amazon EC2 FAQs, Amazon web services,
Mar. 24, 2011 via amazon.com/ec2/faqs/.

Hookway, Raymond J. And Herdeg, Mark A., Digital FX!32: com-
bining emulation and binary translation, Digital Technical Journal,
1997, 3-12, 9(1), Digital Equipment Corp., Action, MA, USA.
Fallin, Chris and Craik, Chris, Lightweight page migration for
improved system throughout, Accessed Mar. 20, 2012 via ece.cmu.
edu/~cfallin/ 18740/report.pdf.

Corbalan, Julita, et al., Evaluation of the memory p. migration influ-
ence in the system performance: the case of the SGI 02000, ICS *03
proceedings of the 17th annual international conference on
Supercomputing, 2003, 121-129, ACM, New York, NY, USA.
Sites, Richard L., et al., Binary translation, Communications of the
ACM, Feb. 1993, 69-81, 36(2), ACM, New York, NY, USA.
Dehnert, James C., et al., The Transmeta Code Morphing software:
using speculation, recovery, and adaptive retranslation to address
real-life challenges, Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime
optimization, 2003, 15-24, IEEE Computer Society, Washington,
DC, USA.

Ebcioglu, Kemal and Altman, Erik R., Daisy: dynamic compilation
for 100% architectural compatibility, Proceedings of the 24th annual
international symposium on Computer architecture, 1997, 26-37,
ACM, New York, NY, USA.

Bala, Vasanth, et al., Dynamo: a transparent dynamic optimization
system, Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation, Jun. 2000, 1-12,
ACM, New York, NY, USA.

Albonesi, David H., Selective cache ways: on-demand cache
resource allocation, Proceedings of the 32nd annual ACM/IEEE
international symposium on Microarchitecture, Nov. 1999, 248-259,
IEEE Computer Society, Washington, DC, USA.

Microsoft, Microsoft.net, Accessed on Mar. 20, 2012 via microsoft.
com/net/.

Baraz, Leonid, et al., IA-32 execution layer: a two-phase dynamic
translator designed to support IA-32 applications on Itanium-based
systems, Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, Dec. 2003, 191, IEEE Computer
Society, Washington, DC, USA.

“Kvm—kernel based virtual machine,” Red Hat Linux, pp. 11

(2009).
“What I Would Change about Microsoft Windows Azure,” accessed
at web.archive.org/web/20110525023222/cloud-computing.

learningtree.com/2010/08/19/what-i-would-change-about-
microsoft-windows-azure/, published on Aug. 19, 2010, pp. 1-2.
Hammond, E., “Move a Running EBS Boot Instance to New Hard-
ware on Amazon EC2” accessed at web. archive.org/web/
20110909143405/alestic.com/2010/05/ec2-move-ebs-boot-in-
stance, posted May 4, 2010, pp. 1-4.

* cited by examiner

U.S. Patent Nov. 17, 2015 Sheet 1 of

7

US 9,189,271 B2

Transfer Service 106

Persistent State
Transfer Module
110

Origin Virtual Machine

102

Origin Pointer Index
Module
12

Destination Pointer
Index Module
14

Delta Data Transfer
Module
116

Destination Virtual
Machine

104

Cloud Computing System

FIG. 1

U.S. Patent Nov. 17, 2015 Sheet 2 of 7 US 9,189,271 B2

(7—252 r—— 254
1 \
Uncompiled = Origin =— Destination
Code —— Pointers Index —— Pointers Index
200 = 242 = 244
262~ 264~
Origin \ Destination
v \ Executable \ Executable
290 210 o c212 214
(/' Origin Destination
Pointer Pointer
< Yy Index Index
210 210 |<— Module Module
12 / 114
h 4 — i
L[%70 210 | |
| Origin ™ Destination
Y Compiler/ Compiler
sy = =)
o7 = 7
224
\ \232 \ \
202 204 234

FIG. 2

U.S. Patent

Nov. 17,2015 Sheet 3 of 7 US 9,189,271 B2
252
—
1 i
— \ — L
Origin Dor'g'”. = _ Origin Destination || i ation
Persistent ynamic == Pointer Index Dynamic Persistent
Memor] 242 Memory
State € y — == State
State 262 = State
302 12 254 314 S04
A —
Origin == Destination Destination
Executable == Pointer Index Executable
202 = 244 204
264~ 004
222 Delta Data P
Transfer Module - >
| 116
) 4 - 4
orii Persistent State | N Destination
rigin | T f M | 1 1
APIls/ rans (13:0 odule l '/ APIs/
functions/ — | functions/
services services
306 (264 308
Origin Virtual Machine Transfer Service 106 Destination Virtual
102 Machine 104
232/

FIG. 3

U.S. Patent Nov. 17, 2015 Sheet 4 of 7 US 9,189,271 B2

4007 N\

LAUNCH A DESTINATION EXECUTABLE

402

TRANSFER PERSISTENT STATE DATA

404

TRANSFER DELTA DATA

406

SWITCH FROM THE ORIGIN VIRTUAL MACHINE
TO THE DESTINATION VIRTUAL MACHINE

408

FIG. 4

U.S. Patent Nov. 17, 2015 Sheet 5 of 7 US 9,189,271 B2

/\ 500

Launch a Destination Virtual 2 502
Machine
504/\ Y
Pestination Virtual
Machine is done ‘
booting? r’ 510
514 — Y /\\5\08
Copy Persistent Write Persistent
Gaﬁ‘l\:gtgelta X State Data State at Destination
N
526 1 Launch a Destination 508
. > Executable [518
Switch 1o
Cestination ‘ Refer Through
with . f‘ 5186 Destination
Look Up Origin ;
Executable - i | e § Pointer Index to
Add » Variable Location in Write Locati
re§s Qrigin Painter Index rite Location
Translation
4 [R —— 520 +
hd N i N
524 i Index Variabie
Done with is an Execution
522 Reference,
Ready for Deltas F_ Update Value
Switch? Write Memory
State in Indexed
Location at -
Destination
512

FIG. 5

U.S. Patent Nov. 17, 2015 Sheet 6 of 7 US 9,189,271 B2

800 A computer program product.

602 A signal bearing medium.

802 pMachine-readable instructions, which, if executed by one or more
processors, operatively enable a computing device to:

faunch a destination executable on a destination virtual machine while
an origin virtual machine continues to execute an origin executable, wherein
the destination virtual machine has different characteristics from the origin
virtual machine;

transfer persistent state data from the origin virtual machine to the
destination virtual machine;

transfer delta data from a delta queue associated with the origin virtuat
machine 10 the destination virtual machine while the orgin virtual machine
continues o execute the origin executable; and/or

switch from the origin virtual machine to the destination virtual machine
when the launching of the destination executable has been completed and the
delta queue is empty.

! I i
| 806 acomputer | | gog 4 ecordable | | a. i
| readzable medium. |) { communications
| medium. I . I
I p { meditm.
, | H
b I _t F o

FIG. 6

US 9,189,271 B2

Sheet 7 of 7

Nov. 17, 2015

U.S. Patent

L "9l

i s e sl s s s e i i s s s i Wl e s i i s e e e i s s, e .l s e i ey

—

([%/) 5D ARLIAIUT SREI0NG V

74 (aay %) aaa/go 89)
JRJOHRIOT) (ze2) 98eimg {167} 38va0yg
ERSRE JET FIGLAOWAG-UON Sjqeaoway

(ZF2) sNg SDCLIdI]

!
!
!
Amvmmmmw@ f1] (esw (182
N (5140 ROHUCTY
funndwon n”mH sy nHU IOAION]
PO W
i
f
w i)
} AN Ij[0HU0D)
i | ooeprsug
Ll o0 pResed
{) {s Vtﬁm
o/ (122)
] sl 97100U0D)
} v ooepsg
{ [eLAS
{
}
w AT
i ﬂHv Surssaool]
f1] tea) opy
&] (hiod
3 YA m@é i)
Jurssacorg
W AHV sorgdesn
H (o oooeymmnding

(057 S901A0p 290G

_.
_ A (0623 sng] AMOWBJN v m
A § B— . (cz2) m

' o, E_ g RN g !
Iy Ioponuoy Aowsy | !
" ” 1L m (F77) To0] WeISoI] w
| (1) sansidoy | |
I ; ‘

I L i Eﬁ:cmﬁwe\‘.wéémﬁ w
[dsa/0d1/01V , .

: 2U07) JOSSI0OI] : !
¥ H| TEEronenaay ||
R, i e m
it awed || ewed i 120 m
I ” 7 Jpaer] ﬂw. Tﬂﬁ . wopsAg Sunesad(y |
_ m awmﬁmN‘U .‘\AM m E(NVH_EAUMH m
[Tz 7o%sasarg : |
l ".. ; “
|3 i

{002) 557437 sUmndEich

US 9,189,271 B2

1
OPERATION TRANSFER FROM AN ORIGIN
VIRTUAL MACHINE TO A DESTINATION
VIRTUAL MACHINE WHILE CONTINUE
THE EXECUTION OF THE OPERATION ON
THE ORIGIN VIRTUAL MACHINE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a U.S. national stage application
filing under 35 U.S.C. §371 claiming the benefit of Interna-
tional Application No. PCT/US2011/051387, filed on Sep.
13, 2011, the entire contents of which are incorporated herein
by reference.

BACKGROUND

Unless otherwise indicated herein, the approaches
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in
this section.

Current cloud computing services may be stopped and then
restarted over again when moving between virtual machines
that have different capabilities such as memory and API
types. Accordingly, components that can’t be distributed
between servers (e.g., as may often be the case with database
services) may be run on the largest hardware virtual machine
so that they can reasonably handle peak usage conditions. The
alternative to selecting virtual machines based on peak usage
conditions is to face a significant delay and loss of transient
state data. Such delay and loss of transient state data may be
due to services being stopped and then restarted during
switchovers to larger hardware virtual machines.

Accordingly, current cloud computing services may typi-
cally be run at all times on virtual machines selected to be
capable of handling peak usage conditions. However, virtual
machines selected to be capable of handling peak usage con-
ditions may only need maximum resources for less than five
percent of the time. For example, Amazon Elastic Compute
Cloud (EC2) pricing takes advantage of this to some degree
with a “large” virtual machine priced at four times the price of
a “small” virtual machine and an “extra large” virtual
machine priced at eight times the price of a “small” virtual
machine.

SUMMARY

Some example methods, apparatus, and systems related to
transferring operation from an origin virtual machine to a
destination virtual machine may be implemented in a cloud
computing system. Such a cloud computing system may
include several modules. A first module may be configured to
generate an origin pointer index associated with an origin
executable, where the origin executable is configured to be
executed on an origin virtual machine. A second module may
be configured to generate a destination pointer index associ-
ated with a destination executable, where the destination vir-
tual machine has different characteristics from the origin
virtual machine. Such a destination executable may be con-
figured to be executed on a destination virtual machine. A
third module may be configured to transfer persistent state
data from the origin virtual machine to the destination virtual
machine. A fourth module may be configured to transfer delta
data from a delta queue associated with the origin virtual
machine to the destination virtual machine while the origin
virtual machine continues to execute the origin executable.

10

15

20

25

30

35

40

45

50

55

60

65

2

The fourth module may be configured to transfer delta data
based at least in part on the origin pointer index and the
destination pointer index.

Some example methods may include operations for trans-
ferring operation from an origin virtual machine to a destina-
tion virtual machine. Such operations may launch a destina-
tion executable on a destination virtual machine while an
origin virtual machine may continue to execute an origin
executable, where the destination virtual machine may have
different characteristics from the origin virtual machine. Per-
sistent state data may be transferred from the origin virtual
machine to the destination virtual machine. Delta data may be
transferred from a delta queue associated with the origin
virtual machine to the destination virtual machine while the
origin virtual machine may continue to execute the origin
executable. A switch from the origin virtual machine to the
destination virtual machine may be performed when the
launching of the destination executable has been completed
and the delta queue is empty.

Some example articles may include machine-readable
instructions for transferring operation from an origin virtual
machine to a destination virtual machine. Such machine-
readable instructions may launch a destination executable on
a destination virtual machine while an origin virtual machine
may continue to execute an origin executable, where the
destination virtual machine may have different characteristics
from the origin virtual machine. Persistent state data may be
transferred from the origin virtual machine to the destination
virtual machine. Delta data may be transferred from a delta
queue associated with the origin virtual machine to the des-
tination virtual machine while the origin virtual machine may
continue to execute the origin executable. A switch from the
origin virtual machine to the destination virtual machine may
be performed when the launching of the destination execut-
able has been completed and the delta queue is empty.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE DRAWINGS

Subject matter is particularly pointed out and distinctly
claimed in the concluding portion of the specification. The
foregoing and other features of the present disclosure will
become more fully apparent from the following description
and appended claims, taken in conjunction with the accom-
panying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings.

In the drawings:

FIG. 1 illustrates a schematic diagram of an example cloud
computing system that is arranged in accordance with at least
some embodiments of the present disclosure;

FIG. 2 illustrates a schematic diagram of an example gen-
eration of origin and destination pointer indexes that is
arranged in accordance with at least some embodiments of
the present disclosure;

FIG. 3 illustrates a schematic diagram of an example trans-
fer of data from an origin virtual machine to a destination
virtual machine that is arranged in accordance with at least
some embodiments of the present disclosure;

US 9,189,271 B2

3

FIG. 4 illustrates an example process for transferring
operation from an origin virtual machine to a destination
virtual machine that is arranged in accordance with at least
some embodiments of the present disclosure;

FIG. 5 illustrates another example process for transferring
operation from an origin virtual machine to a destination
virtual machine that is arranged in accordance with at least
some embodiments of the present disclosure;

FIG. 6 is an illustration of an example computer program
product that is arranged in accordance with at least some
embodiments of the present disclosure; and

FIG. 7 is a block diagram of an illustrative embodiment of
acomputing device arranged in accordance with at least some
embodiments of the present disclosure.

DETAILED DESCRIPTION

The following description sets forth various examples
along with specific details to provide a thorough understand-
ing of claimed subject matter. It will be understood by those
skilled in the art, however, that claimed subject matter may be
practiced without some or more of the specific details dis-
closed herein. Further, in some circumstances, well-known
methods, procedures, systems, components and/or circuits
have not been described in detail in order to avoid unneces-
sarily obscuring claimed subject matter.

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the subject matter pre-
sented here. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the Figures, can be arranged, substituted, com-
bined, and designed in a wide variety of different configura-
tions, all of which are explicitly contemplated and make part
of this disclosure.

This disclosure is drawn, inter alia, to methods, apparatus,
and systems related to transferring operation from an origin
virtual machine to a destination virtual machine while the
origin virtual machine continues to execute an origin execut-
able.

To avoid stopping and restarting cloud computing services
when moving between virtual machines of different capabili-
ties, current cloud computing services may typically be run at
all times on virtual machines selected to be capable of han-
dling peak usage conditions. As will be discussed in greater
detail below, instead of stopping and restarting cloud com-
puting services when moving between virtual machines of
different capabilities, a transfer of operation from an origin
virtual machine to a destination virtual machine may be pos-
sible while the origin virtual machine continues to execute an
origin executable.

As will be discussed in greater detail below, transferring
operation from an origin virtual machine to a destination
virtual machine may be performed “on-the-fly”” In some
examples, such a transter of operations may occur where the
origin virtual machine and the destination virtual machine
have different characteristics, such as, by way of example, the
origin virtual machine being 32-bit based while the destina-
tion virtual machine is 64-bit based, or the origin virtual
machine and the destination virtual machine having proces-
sors with different memory models altogether, or the like.
Such transferring operation may include a combined strategy

10

15

20

25

30

35

40

45

50

55

60

65

4

of booting a new service that is native to the destination
virtual machine along with an origin and destination pair of
pointer indexes that may allow translation between memory
models. For example, such an origin and destination pair of
pointer indexes may be utilized for memory translation to
allow live service transfer to higher or lower capability virtual
machines.

FIG. 1 illustrates a schematic diagram of an example cloud
computing system 100 that is arranged in accordance with at
least some embodiments of the present disclosure. As illus-
trated, cloud computing system 100 may be organized to
include one or more virtual machines, such as an origin vir-
tual machine 102 and/or a destination virtual machine 104. As
used herein, the term “cloud computing system” may refer to
two or more computing devices (e.g., servers) configured to
be in communication with one another via a network (e.g., the
Internet) and in operation together so as to act as a shared pool
of configurable computing resources that can be provisioned
to an end-user without requiring end-user knowledge of the
physical location and/or configuration of the system that
delivers the services. As used herein the term ‘virtual
machine” may refer to a software implementation that oper-
ates in a cloud computing environment so as to mimic the
operation of a physical computing device. For example, such
cloud computing systems may execute a software implemen-
tation as a virtual machine to mimic the operation of a physi-
cal computing device by making a single physical resource
(e.g., a server, an operating system, an application, storage
device, the like, and/or combinations thereof) appear to func-
tion as multiple logical resources; or making multiple physi-
cal resources (e.g., storage devices, servers, the like, and/or
combinations thereof) appear as a single logical resource.

In some examples, cloud computing system 100 may trans-
fer operation from origin virtual machine 102 to destination
virtual machine 104. In such an example, cloud computing
system 100 may include a transfer service 106 that may
include several modules. In the illustrated example, transfer
service 106 sets forth various functional modules, which may
be performed by hardware, software, and/or firmware. Those
skilled in the art in light of the present disclosure will recog-
nize that numerous alternatives to the functional modules
shown in FIG. 1 may be practiced in various implementa-
tions. For example, although transfer service 106, as shown in
FIG. 1, may comprise one particular organization of functions
distributed into the set of functional modules, the organiza-
tion of these functions among one or more functional mod-
ules does not necessarily limit claimed subject matter to any
particular organization. Likewise, intervening functions not
shown in FIG. 1 and/or additional functions not shown in FIG.
1 may be employed and/or some of the functions shown in
FIG. 1 may be eliminated, without departing from the scope
of claimed subject matter.

As illustrated, transfer service 106 may include a persistent
state transfer module 110, an origin pointer index module
112, a destination pointer index module 114, and/or a delta
data transfer module 116. Persistent state transfer module 110
may be configured to transfer persistent state data from origin
virtual machine 102 to destination virtual machine 104. Des-
tination virtual machine 104 may have different characteris-
tics from origin virtual machine 102. As used herein, the term
“different characteristics” may refer to variations that may
include variations in a memory capacity-type characteristic,
variations in a processing capacity-type characteristic, varia-
tions in an application programming interface-type charac-
teristic, variations in an address-type characteristic, varia-
tions in an operating system-type characteristic, the like, and/
or combinations thereof. Even in cases where origin virtual

US 9,189,271 B2

5

machine 102 and destination virtual machine 104 have dif-
ferent characteristics, the persistent disk state may be utilized
in the same format for both origin virtual machine 102 and
destination virtual machine 104.

Origin pointer index module 112 may be configured to
generate an origin pointer index associated with an origin
executable. Such an origin executable may be configured to
be executed on origin virtual machine 102. Additional details
regarding the origin executable and origin pointer index are
discussed below with regard to FIG. 2.

Destination pointer index module 114 may be configured
to generate a destination pointer index associated with a des-
tination executable. As mentioned above, destination virtual
machine 104 may have different characteristics from origin
virtual machine 102. Accordingly, such a destination execut-
able may be configured to be executed on destination virtual
machine 104, as opposed to being configured for execution on
origin virtual machine 102. Additional details regarding the
destination executable and destination pointer index are dis-
cussed below with regard to FIG. 2.

Delta data transfer module 116 may be configured to trans-
fer delta data from a delta queue associated with origin virtual
machine 102 to destination virtual machine 104. As used
herein, the term “delta data” may refer to environmental state
data that is not associated with persistent state memory, such
as environmental state data that is associated with dynamic
state memory, and may also refer to persistent state data for
disk updates as long as the persistent state data transfer
between virtual machines is in progress. In some examples,
such a transfer of delta data from origin virtual machine 102
to destination virtual machine 104 may occur while origin
virtual machine 102 continues to execute the origin execut-
able. Delta data transfer module 116 may be configured to
transfer delta data based at least in part on the origin pointer
index and the destination pointer index.

In operation, the transfer of data between origin virtual
machine 102 and destination virtual machine 104 may
involve matching the environmental state (e.g., including per-
sistent state memory and dynamic state memory) as well as
the program state (e.g., the line of code the executable is
currently processing). Persistent state transfer module 110
may be utilized to transfer persistent state-type environmental
state data from origin virtual machine 102 to destination
virtual machine 104. However, as destination virtual machine
104 may have different characteristics from origin virtual
machine 102, the locations within the origin executable asso-
ciated with dynamic state data and program state data may not
be the same locations within the destination executable.
Accordingly, delta data transfer module 116 may be config-
ured to adjust for location variation between origin virtual
machine 102 and destination virtual machine 104 during the
transfer of delta data (e.g., dynamic state-type environmental
state data). For example, delta data transfer module 116 may
utilize the origin pointer index and the destination pointer
index in combination to transfer delta data (e.g., dynamic
state-type environmental state data) from origin virtual
machine 102 to destination virtual machine 104. Additionally
oralternatively, delta data transfer module 116 may utilize the
origin pointer index and the destination pointer index in com-
bination to adjust for location variation between origin virtual
machine 102 and destination virtual machine 104 to translate
the program state data (e.g., what line of code the origin
executable is currently processing). Additional details regard-
ing the transfer of data between origin virtual machine 102
and destination virtual machine 104 are discussed below with
regard to FIG. 3.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2 illustrates a schematic diagram of an example gen-
eration of origin and destination pointer indexes that is
arranged in accordance with at least some embodiments of
the present disclosure. In the illustrated example, an uncom-
piled code 200 may be compiled via an origin compiler 203
into an origin executable 202 and may be compiled via a
destination compiler 205 into a destination executable 204.
For example, destination virtual machine 104 (see, e.g., FIG.
1) may have different characteristics from origin virtual
machine 102 (see, e.g., FIG. 1). Accordingly, destination
executable 204 may be configured to be executed on destina-
tion virtual machine 104 (see, e.g., FIG. 1), as opposed to
being configured for execution on origin virtual machine 102
(see, e.g., FIG. 1).

Uncompiled code 200 may include various procedures,
application programming interface (API) calls, and/or func-
tions (referred to generally hereafter as procedures 210).
Uncompiled code 200 may be compiled via origin compiler
203 into origin executable 202 with an arrangement of pro-
cedures 210 into origin procedures 212. Similarly, uncom-
piled code 200 may be compiled via destination compiler 205
into origin executable 202 with an arrangement of procedures
210 into destination procedures 214.

In some examples, certain transfer points 220 may be iden-
tified from uncompiled code 200. Such transfer points 220
may be utilized to identify when switching operation from
origin virtual machine 102 (see, e.g., FIG. 1) to destination
virtual machine 104 (see, e.g., FIG. 1) would be acceptable.
Such transfer points 220 may be identified by origin compiler
203 and/or by destination compiler 205. Such transfer points
220 may represent the same place in the logic and loop flow
for both destination virtual machine 104 (see, e.g., FIG. 1)
and origin virtual machine 102 (see, e.g., FIG. 1), so both
compilers 203 and 205 get the same transfer points. Such an
operation may be done either by having both compilers 203
and 205 use the same algorithm to determine transfer points
220 (e.g., by explicitly defining transfer points 220 in code),
or by using an algorithmic tool to add transfer points 220 to
uncompiled code 200 before compiling. For example, origin
compiler 203 may identify transfer points 220 and insert
corresponding origin bookmark locations 222 into origin
executable 202. Similarly, destination compiler 205 may
identify transfer points 220 and insert corresponding destina-
tion bookmark locations 224 into destination executable 204.
As mentioned previously, destination virtual machine 104
(see, e.g., FIG. 1) may have different characteristics from
origin virtual machine 102 (see, e.g., FIG. 1). Accordingly,
the position of destination bookmark locations 224 within
destination executable 204 may not correspond to the respec-
tive position of origin bookmark locations 222 in origin
executable 202.

In some examples, certain uses of memory may be identi-
fied from uncompiled code 200, such as variable declarations,
procedure calls, and/or procedure returns (referred to gener-
ally hereafter as variables 230). Such variables 230 may be
gathered as delta data during dynamic data transfer when
switching operation from origin virtual machine 102 (see,
e.g., FIG. 1) to destination virtual machine 104 (see, e.g., FIG.
1). Such variables 230 may be associated with an origin
variable location 232 in origin executable 202. Similarly,
such variables 230 may be associated with a destination vari-
able location 234 in destination executable 204. As men-
tioned previously, destination virtual machine 104 (see, e.g.,
FIG. 1) may have different characteristics from origin virtual
machine 102 (see, e.g., FIG. 1). Accordingly, the position of
destination variable locations 234 within destination execut-

US 9,189,271 B2

7

able 204 may not correspond to the respective position of
origin variable locations 232 in origin executable 202.

Origin compiler 203 may include origin pointer index
module 112. Origin pointer index module 112 may be con-
figured to generate an origin pointer index 242 associated
with origin executable 202. Similarly, destination compiler
205 may include destination pointer index module 114. Des-
tination pointer index module 114 may be configured to gen-
erate a destination pointer index 244 associated with destina-
tion executable 204.

As discussed above, the position of destination bookmark
locations 224 in destination executable 204 may not corre-
spond to the respective position of origin bookmark locations
222 in origin executable 202. Accordingly, origin pointer
index 242 may include a multiple number of origin bookmark
pointers 252. For example, such origin bookmark pointers
252 may be associated with individual points (e.g., origin
bookmark locations 222) within origin executable 202 des-
ignated as logical points to switch from origin virtual
machine 102 (see, e.g., FIG. 1). Similarly, destination pointer
index 244 may include a multiple number of destination
bookmark pointers 254. For example, Individual destination
bookmark pointers 254 may indicate the equivalent position
in destination executable 204 for the equivalent origin book-
mark pointer 252 in the origin pointer index 242.

As discussed above, the position of destination variable
locations 234 within destination executable 204 may not cor-
respond to the respective position of origin variable locations
232 in origin executable 202. Accordingly, origin pointer
index 242 may include a multiple number of origin persistent
pointers 262. For example, such origin persistent pointers 262
may be associated with corresponding origin variables (e.g.,
via origin variable location 232), where origin persistent
pointers 262 may indicate where corresponding origin vari-
able locations 232 are located in the origin executable 202.
Additionally, origin variable locations 232 themselves may
operate as origin variable pointers, where such origin variable
pointers may indicate where corresponding origin variables
are located in an origin memory (not shown). Similarly, des-
tination pointer index 244 may include a multiple number of
destination persistent pointers 264. For example, such desti-
nation persistent pointers 264 may be associated with corre-
sponding destination variables (e.g., via origin variable loca-
tion 232), where destination persistent pointers 264 may
indicate where corresponding destination variable locations
234 are located in the destination executable 204. Addition-
ally, destination variable locations 234 themselves may oper-
ate as origin variable pointers, where such origin variable
pointers may indicate where corresponding origin variables
are located in a destination memory (not shown).

Accordingly, data regarding a given variable stored in
memory may be pointed to from destination executable 204
via a corresponding destination variable location 234, while
the position of destination variable location 234 may be
pointed to from destination pointer index 244 via a corre-
sponding destination persistent pointer 264. Likewise, data
regarding a given variable stored in memory may be pointed
to from origin executable 202 via a corresponding origin
variable location 232, while the position of origin variable
location 232 may be pointed to from origin pointer index 242
via a corresponding origin persistent pointer 262. Additional
details regarding the transfer of data between origin virtual
machine 102 (see, e.g., FIG. 1) and destination virtual
machine 104 (see, e.g., FIG. 1) are discussed below with
regard to FIG. 3.

In operation, origin pointer index module 112 and destina-
tion pointer index module 114 may, at compile time, generate

10

25

30

40

45

50

55

65

8

pointer indexes 242 and 244 that may contain persistent
pointers 262 and 264 to variables used in the code. For
example, when code is compiled the executable binary code
may typically convert variables to access pointer storage so
that when memory space is dynamically allocated a pointer
(e.g., origin variable pointers and/or destination variable
pointers) can be stored linking to wherever the operating
system (OS) dynamic memory allocation happens to put the
variable contents. Variables that do not operate in this way
may include type-defined globals. Pointer indexes 242 and
244 generated at compile time may include persistent point-
ers 262 to the origin variable pointers (e.g., pointers to point-
ers). Additionally or alternatively, pointer indexes 242 and
244 may include pointers to any pre-allocated globals as well.
Pointer indexes 242 and 244 may not include a copy of the
origin variable pointers and/or destination variable pointers,
but rather may include pointers to where in the executable
code one can find the origin variable pointers and/or destina-
tion variable pointers. Thus, accessing a variable through the
pointer indexes 242 and 244 may involve a multi-step process
of'looking an address up in the pointer indexes 242 and 244
and following it to the destination variable pointers, which
might then be followed to access the actual value. Such
pointer indexes 242 and 244 may allow one to find the same
variable in memory for differently compiled executables on
different memory modeled systems.

In operation, uncompiled code 200 may use variable dec-
larations 230 that may be dynamically declared (as well as
procedure call and return points). Such uncompiled code 200
may be compiled for both different virtual machine charac-
teristics (e.g., a 32-bit environment and a 64-bit environ-
ment). The resulting compiled origin executable 202 (e.g.,
32-bit) and compiled destination executable 204 (e.g., 64-bit)
may be significantly different as they use different libraries,
different memory models, and likely some different proce-
dure versions. Origin pointer index module 112 and destina-
tion pointer index module 114 may be utilized to generate
pointer indexes 242 and 244, respectively, to the variables
used in origin executable 202 and destination executable 204.
Pointer indexes 242 and 244 may not point to the variables
themselves (which may not be allocated until well into runt-
ime) but rather point to the places within origin executable
202 and destination executable 204 which will contain
executable pointers 232 and 234 to the ultimate variable loca-
tions. The pointer indexes 242 and 244 may be considered an
index that allows one to find the same variables in two differ-
ently compiled versions of the same code. This pointer-to-
pointers approach may work for even complex variable types
like pointer linked lists (e.g., pointer linked lists which may be
iterated through), expandable arrays, and/or the like.

FIG. 3 illustrates a schematic diagram of an example trans-
fer of data from origin virtual machine 102 to a destination
virtual machine 104 that is arranged in accordance with at
least some embodiments of the present disclosure. The trans-
fer of data between origin virtual machine 102 and destina-
tion virtual machine 104 may involve matching the environ-
mental state (e.g., including persistent state memory and
dynamic state memory) as well as the program state (e.g.,
equivalent origin and destination executable pointers indicat-
ing what line of code origin executable 202 is currently pro-
cessing).

Persistent state transfer module 110 may be utilized to
transfer persistent state-type environmental state data from
origin virtual machine 102 to destination virtual machine 104.
For example, persistent state transfer module 110 may be
utilized to transfer persistent state-type environmental state
data from an origin persistent state 302 to a destination per-

US 9,189,271 B2

9

sistent state 304. In some examples, persistent state transfer
module 110 may copy origin persistent state 302 (such as disk
storage) to destination persistent state 304 via delta detection
and updating for consistency and/or the like. See for example,
R. Bradford et al.,, “Live wide-area migration of virtual
machines including local persistent state,” in Proceedings of
the 3rd international conference on Virtual execution envi-
ronments (ACM, 2007), 169-179.

While persistent state transfer module 110 may transfer
persistent state-type environmental state data from origin per-
sistent state 302 to destination persistent state 304, persistent
state transfer module 110 may additionally be configured to
launch a copy of the destination-appropriate binary (e.g.,
destination executable 204) instead of directly copying the
origin-appropriate binary (e.g., origin executable 202). For
example, origin executable 202 may be a 32-bit executable,
by way of example, while destination executable 204 may be
a 64-bit executable, rendering the origin-appropriate binary
(e.g., origin executable 202) unsuitable for destination virtual
machine 104. Such a launch-instead-of-copy approach may
save bandwidth during virtual machine migration. However,
such a launch-instead-of-copy approach may be unconven-
tional as such an approach may normally leave one unable to
copy origin dynamic memory state 312 without additional
procedures (e.g., such as procedures that may be describe in
greater detail below with regard to FIGS. 4 and/or 5).

As destination virtual machine 104 may have different
characteristics from origin virtual machine 102, the locations
within origin executable 202 associated with dynamic state
data and program state data likely will not be the same loca-
tions within destination executable 204. Accordingly, delta
data transfer module 116 may be configured to adjust for
location variation between origin virtual machine 102 and
destination virtual machine 104 during the transfer of delta
data (e.g., dynamic state-type environmental state data). For
example, delta data transfer module 116 may utilize origin
pointer index 242 and destination pointer index 244 in com-
bination to transfer delta data (e.g., dynamic state-type envi-
ronmental state data) from origin virtual machine 102 to
destination virtual machine 104. For example, delta data
transfer module 116 may utilize origin pointer index 242 and
destination pointer index 244 in combination to transfer delta
data from an origin dynamic memory state 312 to a destina-
tion dynamic memory state 314.

In operation, delta data transfer module 116 may gather
past delta data from a delta queue (not shown) associated with
the origin virtual machine. For example, delta data transfer
module 116 may gather past delta data from origin dynamic
memory state 312. In some examples, delta data may be
gathered via delta data-update based techniques and/or live
network connection transfer techniques. For example, virtual
machine (VM) migration techniques may include systems for
moving the disk image, virtual machine image, and memory
state information. In such an example a copy may be made of
the disk state, the virtual machine, and/or the memory state
while capturing any changes that occur after the time of copy
(e.g., delta data). As a further example, a Xen-type hypervisor
may incorporate a split driver architecture for block devices to
allow use of a raw block device (blkfront) interception of
messages to storage. The block tap (blktap) framework can
thus be used to generate change maps or “delta data” once
copying starts and thus keep the destination state information
updated. In such an example, whenever the delta queue is
empty, the two machines are in sync. See for example, A.
Warfield, S. Hand, K. Fraser and T. Deegan, “Facilitating the
Development of Soft Devices”, in USENIX, 2005. Addition-
ally, a virtual machine hypervisor may support commands

10

15

20

25

30

35

40

45

50

55

60

65

10

like “iproute2” which may establish an IP tunnel for network
redirection until the Dynamic Domain Name System (DNS)
entry for the service can be updated. See for example, C.
Perkins, “IP encapsulation within IP”, 1996, RFC 2003 and/
or B. Wellington, “Secure DNS Dynamic Update”, RFC
3007. In such cases, a service may have two addresses for a
while (the old address responding to requests that have not yet
processed the address update, and the new address for new
connections and updated requestors) until all requestors have
updated.

In some examples, delta data transfer module 116 may
request dynamic memory allocations for variables as they are
copied. Delta data transfer module 116 may locate an origin
variable read location (e.g., origin variable location 232) by
looking up the gathered past delta data in origin pointer index
242. For example, delta data transfer module 116 may locate
origin variable location 232 by looking up the gathered past
delta data in origin pointer index 242 based at least in part on
persistent pointers 262. Delta data transfer module 116 may
determine a destination write location by referring through
destination pointer index 244 based at least in part on the
origin variable read location (e.g., origin variable location
232). For example, delta data transfer module 116 may deter-
mine a destination write location by referring through desti-
nation pointer index 244 based at least in part on persistent
pointers 264. Delta data transfer module 116 may write a
memory state in destination memory state 314 based at least
in part on such a destination write location.

Additionally or alternatively, delta data transfer module
116 may utilize origin pointer index 242 and destination
pointer index 244 in combination to adjust for location varia-
tion between origin virtual machine 102 and destination vir-
tual machine 104 to translate the program state data (e.g.,
what line of code origin executable 202 is currently process-
ing). For example, bookmark pointers 252 of origin pointer
index 242 may be associated with individual points within
origin executable 202 designated as logical points (e.g., ori-
gin bookmark locations 222) to switch from origin virtual
machine 102. For example, bookmark pointers 252 may be
associated with frequent execution points (e.g., such as each
procedure and/or function call) and the actual transfer may be
made when the execution location of origin virtual machine
102 is at one of these points.

Similarly, bookmark pointers 254 of destination pointer
index 244 may be associated with individual points within the
destination executable designated as logical points (e.g., des-
tination bookmark locations 224) to switch to destination
virtual machine 104. In operation, delta data transfer module
116 may adjust for location variation between origin virtual
machine 102 and destination virtual machine 104 by referring
through bookmark pointers 252 of origin pointer index 242 to
bookmark pointers 254 of destination pointer index 244.
Once the environmental state of origin virtual machine 102
and destination virtual machine (e.g., including matched per-
sistent state memory and dynamic state memory having
return coordinates and state all translated to be compatible
with the destination executable 204) are matched, any proce-
dure call may be a viable point to transfer the process. Thus,
transfer may be triggered when the delta queue is empty,
when execution of origin executable 202 is at an indexed
bookmark pointer, and when destination executable 204 has
finished launching.

In the illustrated example, origin virtual machine 102 and
destination virtual machine 104 may have their own version
of APIs, functions, and/or system services (e.g., origin APIs,
functions, and/or system services 306 and destination APIs,
functions, and/or system services 308). Such APIs, functions,

US 9,189,271 B2

11

and/or system services 306 and 308 may become available
when destination virtual machine 104 is booted in preparation
for moving the service. The same or similar APIs and libraries
may be generally available on each virtual machine type.

FIG. 4 illustrates an example process 400 for transferring
operation from an origin virtual machine to a destination
virtual machine that is arranged in accordance with at least
some embodiments of the present disclosure. In the illustrated
example, process 400, and other processes described herein,
set forth various functional blocks or actions that may be
described as processing steps, functional operations, events
and/or acts, etc., which may be performed by hardware, soft-
ware, and/or firmware. Those skilled in the art in light of the
present disclosure will recognize that numerous alternatives
to the functional blocks shown in FIG. 4 may be practiced in
various implementations. For example, although process 400,
as shown in FIG. 4, may comprise one particular order of
blocks or actions, the order in which these blocks or actions
are presented does not necessarily limit claimed subject mat-
ter to any particular order. Likewise, intervening actions not
shown in FIG. 4 and/or additional actions not shown in FIG.
4 may be employed and/or some of the actions shown in FIG.
4 may be eliminated, without departing from the scope of
claimed subject matter. Process 400 may include one or more
of functional operations as indicated by example operations
402, 404, 406, and/or 408.

As illustrated, process 400 may be implemented for trans-
ferring operation from an origin virtual machine to a destina-
tion virtual machine (see, e.g., FIG. 1). Processing may begin
at operation 402, “CAUNCH A DESTINATION EXECUT-
ABLE”, where a destination executable on may be launched
on a destination virtual machine. For example, a destination
executable may be launched on a destination virtual machine
while an origin virtual machine may continue to execute an
origin executable. In some examples, the destination virtual
machine may have different characteristics from the origin
virtual machine. In some examples, the launching of the
destination executable on the destination virtual machine
may include running the destination executable with an ini-
tially empty memory during declaration of variables and dur-
ing a determination of memory locations associated with the
declared variables. For example, the destination executable
may access an initially empty memory (e.g., either a memory
that is completely empty or a memory that includes prelimi-
nary dummy data) and set up variables so as to allocate
memory and to generate variables (e.g., such variables may be
used with the origin and/or destination pointer indexes to
perform find and replace operations with origin data). In such
an example, the destination executable may be running as
close to the origin executable as possible prior to transfer of
persistent state data and/or delta data, at which point a hyper-
visor might freeze the destination executable until transfer of
the persistent state data and delta data is complete.

Processing may continue from operation 402 to operation
404, “TRANSFER PERSISTENT STATE DATA”, where
persistent state data may be transferred. For example, persis-
tent state data may be transferred from the origin virtual
machine to the destination virtual machine.

Processing may continue from operation 404 to operation
406, “TRANSFER DELTA DATA”, where delta data may be
transferred. For example, delta data may be transferred from
a delta queue associated with the origin virtual machine to the
destination virtual machine. In some examples, such a trans-
fer of delta data may be done while the origin virtual machine
may continue to execute the origin executable. In some
examples, transferring dynamic state data in bulk may be
done prior to transfer of delta data (or simultaneous to an

10

15

20

25

30

35

40

45

50

55

60

65

12

initial transfer of delta data), and then the transfer of delta data
may be performed to keep the dynamic state data updated.

In some examples, such a transfer of the delta data may
further include transferring the delta data from the origin
virtual machine to the destination virtual machine based at
least in part on an origin pointer index. For example, the
origin pointer index may include multiple persistent pointers
associated with corresponding origin variables. In such an
example, the persistent pointers may indicate where corre-
sponding origin variable pointers are located in the origin
executable, and the origin variable pointers may indicate
where corresponding origin variables are located in an origin
memory. Thus, the transfer of delta data may include iterating
through the origin pointer index.

In some examples, such a transfer of the delta data may
further include transferring the delta data from the origin
virtual machine to the destination virtual machine based at
least in part on a destination pointer index. For example, the
destination pointer index may include multiple persistent
pointers associated with corresponding destination variables.
In such an example, the persistent pointers may indicate
where corresponding destination variable pointers are located
in the destination executable, and the destination variable
pointers may indicate where corresponding destination vari-
ables are located in a destination memory. Thus, the transfer
of delta data may include iterating through the destination
pointer index.

Processing may continue from operation 406 to operation
408, “SWITCH FROM THE ORIGIN VIRTUAL
MACHINE TO THE DESTINATION VIRTUAL
MACHINE”, where a switch from the origin virtual machine
to the destination virtual machine may be performed. For
example, such a switch from the origin virtual machine to the
destination virtual machine may be performed when the
launching of the destination executable has been completed
and the delta queue is empty.

Some additional and/or alternative details related to pro-
cess 400 may be illustrated in one or more examples of
implementations discussed in greater detail below with
regard to FIG. 5.

FIG. 5 illustrates another example process for transferring
operation from an origin virtual machine to a destination
virtual machine that is arranged in accordance with at least
some embodiments of the present disclosure. Process 500
may include one or more of functional operations as indicated
by example operations 502, 504, 506, 508, 510, 512, 514,
516, 518, 520, 522, 524, and/or 526.

As illustrated, process 500 may be implemented for trans-
ferring operation from an origin virtual machine to a destina-
tion virtual machine (see, e.g., FIG. 1). Processing may begin
at operation 502, “LAUNCH A DESTINATION VIRTUAL
MACHINE” where a destination virtual machine may be
launched. For example, a destination virtual machine that has
different characteristics than an origin virtual machine may
be launched.

Processing may continue from operation 502 to operation
504, “DESTINATION VIRTUAL MACHINE IS DONE
BOOTING”, where a determination may be made whether
the destination virtual machine is done booting. For example,
a determination may be made whether the destination virtual
machine is done booting. In cases where the destination vir-
tual machine not done booting, operation 504 may be
repeated. In cases where the destination virtual machine is
done booting, processing may continue from operation 504 to
operations 506 and/or 508.

Processing may continue from operation 504 to operation
506, “LAUNCHA DESTINATION EXECUTABLE”, where

US 9,189,271 B2

13

a destination executable on may be launched on a destination
virtual machine. For example, a destination executable may
be launched on a destination virtual machine, where the des-
tination executable may be appropriate for the destination
virtual machine, as opposed to the origin virtual machine
(e.g., as may be the case when the destination virtual machine
has different characteristics from the origin virtual machine).
In some examples, the destination executable may be
launched on the destination virtual machine while the origin
virtual machine may continue to execute an origin executable.
In some examples, the launching of the destination execut-
able on the destination virtual machine may include running
the destination executable with an initially empty memory
during declaration of variables and during a determination of
memory locations associated with the declared variables.

Processing may also continue from operation 504 to opera-
tion 508, “COPY PERSISTENT STATE DATA”, where per-
sistent state data may be copied. For example, persistent state
data may be copied from the origin virtual machine for use by
the destination virtual machine. Processing may continue
from operation 508 to operation 510, “WRITE PERSIS-
TENT STATE AT DESTINATION”, where persistent state
data may be written. For example, persistent state data may be
written to the destination virtual machine to complete the
transfer of persistent state data from the origin virtual
machine to the destination virtual machine.

Processing may continue from operation 510 to operation
512, “READY FOR SWITCH?”, where a determination may
be made whether the destination virtual machine is ready for
switching operation from the origin virtual machine to the
destination virtual machine. For example, such a determina-
tion of whether the destination virtual machine is ready for
switching operation may be based at least in part on a deter-
mination that the launching of the destination executable has
been completed, the delta queue is empty, and/or an execution
address for the destination executable is associated with one
of the multiple bookmark pointers in the destination pointer
index. As discussed above, such bookmark pointers in the
destination pointer index may be associated with individual
points within the destination executable designated as logical
points to switch to the destination virtual machine. In cases
where the destination virtual machine is ready for switching
operation, processing may continue from operation 512 to
operation 526. In cases where the destination virtual machine
is not ready for switching operation processing may continue
from operation 512 to operation 514.

Processing may continue from operation 512 to operation
514, “GATHER DELTA DATA”, where past delta data may
be gathered from the origin virtual machine. For example,
such past delta data may be gathered via block operations or
the like from a delta queue associated with the origin virtual
machine. In some examples, transferring dynamic state data
in bulk may be done prior to transfer of delta data, and then the
transfer of delta data may be performed to keep the dynamic
state data updated.

Processing may continue from operation 514 to operation
516, “LOOK UP ORIGIN VARIABLE LOCATION IN ORI-
GIN POINTER INDEX”, where an origin variable location
may be looked-up in the origin pointer index. For example,
locating an origin variable read location (e.g., for translation
from origin executable to destination executable) may be
located by looking up the gathered past delta data via the
origin pointer index. In such an example, the origin pointer
index may include multiple persistent pointers associated
with corresponding origin variables. In some examples, the
origin index pointer may take delta data and utilize a persis-
tent pointer to refer to an address associated with an origin

25

30

40

45

55

14

variable pointer (e.g., a pointer in the origin executable), the
origin variable pointer may in turn refer to an origin variable
in origin memory. For example, the origin pointer index may
include multiple persistent pointers associated with corre-
sponding origin variables. In such an example, the persistent
pointers may indicate where corresponding origin variable
pointers are located in the origin executable, and the origin
variable pointers may indicate where corresponding origin
variables are located in an origin memory (e.g., the origin
variable pointers indicate the origin read location).

Processing may continue from operation 516 to operation
518, “REFER THROUGH DESTINATION POINTER
INDEX TO WRITE LOCATION”, where a write location
associated with a destination variable may be looked-up via
the destination pointer index. For example, a destination write
location (e.g., for translation from origin executable to desti-
nation executable) may be located by referring through the
destination pointer index based at least in part on the origin
variable read location (see, e.g., Operation 516). In some
examples, the destination index pointer may include persis-
tent pointers that may refers an address associated with a
destination variable pointer (e.g., a pointer in the destination
executable), where the destination variable pointer may in
turn refer to an address to write the origin variable into des-
tination memory. For example, the destination pointer index
may include multiple persistent pointers associated with cor-
responding destination variables. In such an example, the
persistent pointers may indicate where corresponding desti-
nation variable pointers are located in the destination execut-
able, and the destination variable pointers may indicate where
corresponding destination variables are located in a destina-
tion memory (e.g., the destination variable pointers indicate
the destination write location).

Processing may continue from operation 518 to operation
520, “IF INDEX VARIABLE IS AN EXECUTION REFER-
ENCE, UPDATE VALUE”, where delta data that is an execu-
tion reference may trigger an updated value. For example,
such execution references may refer to the line of origin
executable currently being processed. When the delta data
indicates a change in the execution reference associated with
the origin executable, operation 520 will update a corre-
sponding execution reference value associated with the des-
tination executable. In some examples, the destination pointer
index may includes multiple bookmark pointers, where the
bookmark pointers may be associated with individual points
within the destination executable that have been designated as
logical points to switch to the destination virtual machine or
points that may appear in execution references such as pro-
cedure return points, if/then statements, or loops. In such
examples, the updated corresponding execution reference
value associated with the destination executable may be uti-
lized in operation 512, where a determine is made whether the
execution address for the destination executable is associated
with one of the multiple bookmark pointers in the destination
pointer index.

Additionally or alternatively, updating the execution refer-
ence value may occur where the execution reference includes
one or more of a procedure location within the destination
executable, a return location within the destination execut-
able, a return register from procedures, the like, and/or com-
binations thereof. In such examples, the execution reference
value may be referred to in multiple locations within the
destination executable. In such a case, Operation 520 may
operate so that all of these locations will be updated through-
out the destination executable. Such an update to the locations
within the destination executable may be performed because
the transferring of operation between origin virtual machine

US 9,189,271 B2

15

and destination machine may be done mid-process while
execution pointers to return points or the like may be needed.
For example, the origin pointer index and/or the destination
pointer index may contain pointers to individual procedure
locations within the associated executable (e.g., the book-
mark pointers may be associated with individual points
within the destination executable that have been designated as
logical points to switch to the destination virtual machine or
points that may appear in execution references such as pro-
cedure return points, if/then statements, or loops). In such an
example, the return locations and return registers from pro-
cedures, when translated, may not only be copied but also
have their contents updated so that the return is to the equiva-
lent location in the destination executable. In operation, the
return locations and return registers from procedures may be
updated via an iterative performance of relatively simple
indexing operations, for example.

Processing may continue from operation 520 to operation
522, “WRITE MEMORY STATE IN INDEXED LOCA-
TION AT DESTINATION”, where writing to destination
memory may be performed based at least in part on the
destination write location looked-up via the destination
pointer index. For example, the write location associated with
the destination variable that was previously looked-up via the
destination pointer index, at Operation 518, may be utilized to
write to destination memory.

Processing may continue from operation 522 to operation
524, “DONE WITH DELTAS”, where a determination may
be made whether the gathered deltas have been exhausted. In
cases where the gathered delta data has not been exhausted
processing may continue from operation 524 back to opera-
tion 516 in an iterative loop. For example, such an iterative
loop may repeat the looking-up the origin variable location in
the origin pointer index (see, e.g., Operation 516), determin-
ing the destination write location (see, e.g., Operation 518),
updating the execution reference value (see, e.g., Operation
520), and/or writing the memory state (see, e.g., Operation
522) until the gathered past deltas have been processed (see,
e.g., Operation 524). In cases where the gathered delta data
has been exhausted, processing may continue from operation
524 to operation 512. For example, the gathering of past
deltas (see, e.g., Operation 514) may be repeated until the
destination executable is ready, the delta queue is empty, and
the current execution address corresponds to a bookmark
pointer in the destination pointer index (see, e.g., Operation
512).

In cases where the destination virtual machine is ready for
switching operation, processing may continue from operation
512 to operation 526. Processing may continue from opera-
tion 512 to operation 526, “SWITCH TO DESTINATION
WITH EXECUTABLE ADDRESS TRANSLATION”,
where a switch from the origin virtual machine to the desti-
nation virtual machine may be performed. For example, such
a switch from the origin virtual machine to the destination
virtual machine may include utilizing an execution address
that has been translated from a position in the origin execut-
able to an associated position in the destination executable. In
some examples, such a switch from the origin virtual machine
to the destination virtual machine may be performed when the
launching of the destination executable has been completed
and the delta queue is empty.

In operation, process 500 (and/or process 400 of FIG. 4)
may be utilized for moving from a lower capacity origin
virtual machine to a higher capacity destination virtual
machine. Similarly process 500 (and/or process 400 of FI1G.
4) may be utilized for moving from a higher capacity desti-
nation virtual machine to a lower capacity origin virtual

10

15

20

25

30

35

40

45

50

55

60

65

16

machine. For example, moving to a virtual machine with less
capability (e.g., as might be done after a demand peak is over,
for example) may be done in the same or similar manner as the
moving to a virtual machine with greater capability. In such
an example, operations may be added to process 500 (and/or
process 400 of FIG. 4) that may be directed to having the
application clear unneeded memory (e.g., garbage collec-
tion).

In operation, process 500 (and/or process 400 of FIG. 4)
may allow the use of smaller cloud virtual machines when
they will do the job, and larger ones only as needed, with
reduced or eliminated down time. Such a capability has been
calculated as likely to save many users as much as ninety
percent or more under current pricing models and may also
provide additional efficiencies and market share for micro-
servers during slower times, allowing future data centers to
support more customers with less power and heat. For
example, many users may find that the impact of having to
stop and move a process during what would, by definition, be
their busiest moments, is unacceptable and so they may have
to purchase “Large” or even “Extra Large” virtual machines
to protect against the few times when it is needed. In cases
where “large” virtual machine are priced at four times the
price of a “small” virtual machine and an “extra large” virtual
machine is priced at eight times the price of a “small” virtual
machine, such users might have their costs decrease almost
4-8x if they could simply run on a small virtual machine most
of the time and seamlessly move to larger virtual machines
without stopping.

Additionally or alternatively, process 500 (and/or process
400) may be performed in a just-in-time environment. In such
an example, the origin virtual machine and the destination
virtual machine may be run in parallel with duplicate inputs.
Output from the origin virtual machine and the destination
virtual machine may be compared based at least in part on the
duplicate inputs prior to switching from the origin virtual
machine to the destination virtual machine. Such compilation
systems may iterate through operation of dynamically com-
piled code, tracking the heavy demand procedure calls, and
then focusing on those heavy demand procedure calls. Such
just-in-time-type compilation systems may receive uniform
partially compiled binaries or “thin binaries” and then may
have local optimizations that may be adjusted to be as specific
as desired to the device that the program is running on. In
cases where process 500 (and/or process 400) are performed
in a just-in-time environment, operations associated with ori-
gin pointer index module 112 and/or destination pointer index
module 114 may be implemented instead at the JIT compiler
level, while other operations may be performed in the same
and/or similar manner to that described in processes 400
and/or 500. In cases where the code is subject to continuous
optimization, such optimization may be turned off for both
the origin virtual machine and the destination virtual machine
for the duration of the migration.

Additionally or alternatively, process 500 (and/or process
400) may be performed in an arbitrary binary-type environ-
ment. A variety of methods may be utilized for attempting to
map out an already compiled binary including building call
trees and branching maps, for example. For example, local
topology may be matched within such a call tree to build an
identity for each variable and execution reference so that
pointer indexes for the origin virtual machine and the desti-
nation virtual machine can match origin variables to destina-
tion variables.

Additionally or alternatively, process 500 (and/or process
400) may generate special cloud versions of the software in
cases where memory management is needed. For example,

US 9,189,271 B2

17

when exact memory management (e.g. management depen-
dent on mapping certain objects to particular addresses) is in
use (e.g. for software license locks), such special cloud ver-
sions of the software may be generated that do not require
such special memory management but instead may rely on
communication directly with a virtual machine hypervisor.

FIG. 6 illustrates an example computer program product
600 that is arranged in accordance with at least some
examples of the present disclosure. Program product 600 may
include a signal bearing medium 602. Signal bearing medium
602 may include one or more machine-readable instructions
604, which, if executed by one or more processors, may
operatively enable a computing device to provide the func-
tionality described above with respect to FIG. 4 and/or FIG. 5.
Thus, for example, referring to the system of FIG. 1, cloud
computing system 100 may undertake one or more of the
actions shown in FIG. 4 and/or FIG. 5 in response to instruc-
tions 604 conveyed by medium 602.

In some implementations, signal bearing medium 602 may
encompass a non-transitory computer-readable medium 606,
such as, but not limited to, a hard disk drive, a Compact Disc
(CD), a Digital Versatile Disk (DVD), a digital tape, memory,
etc. In some implementations, signal bearing medium 602
may encompass a recordable medium 608, such as, but not
limited to, memory, read/write (R/W) CDs, R/'W DVDs, etc.
In some implementations, signal bearing medium 602 may
encompass communications medium 610, such as, but not
limited to, a digital and/or an analog communication medium
(e.g., a fiber optic cable, a waveguide, a wired communica-
tions link, a wireless communication link, etc.).

FIG. 7 is a block diagram illustrating an example comput-
ing device 700, such as might be embodied by a person skilled
in the art, which is arranged in accordance with at least some
embodiments of the present disclosure. In one example con-
figuration 701, computing device 700 may include one or
more processors 710 and system memory 720. A memory bus
730 may be used for communicating between the processor
710 and the system memory 720.

Depending on the desired configuration, processor 710
may be of any type including but not limited to a micropro-
cessor (LP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 710 may
include one or more levels of caching, such as a level one
cache 711 and a level two cache 712, a processor core 713,
and registers 714. The processor core 713 may include an
arithmetic logic unit (ALU), a floating point unit (FPU), a
digital signal processing core (DSP Core), or any combina-
tion thereof. A memory controller 715 may also be used with
the processor 710, or in some implementations the memory
controller 715 may be an internal part of the processor 710.

Depending on the desired configuration, the system
memory 720 may be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof.
System memory 720 may include an operating system 721,
one or more applications 722, and program data 724. Appli-
cation 722 may include a transfer algorithm 723 that is
arranged to perform the functions as described herein includ-
ing the functional blocks and/or actions described with
respect to process 400 of FIG. 4 and/or process 500 of FIG. 5.
Program Data 724 may include delta data 725 for use with
transfer algorithm 723. In some example embodiments,
application 722 may be arranged to operate with program
data 724 on an operating system 721 such that implementa-
tions of transferring operation from an origin virtual machine
to a destination virtual machine while the origin virtual
machine continues to execute an origin executable may be

5

10

20

25

30

40

45

50

55

60

65

18

provided as described herein. For example, cloud computing
system 100 (see, e.g., FIG. 1) may comprise all or a portion of
computing device 700 and be capable of performing all or a
portion of application 722 such that implementations of trans-
ferring operation from an origin virtual machine to a destina-
tion virtual machine while the origin virtual machine contin-
ues to execute an origin executable may be provided as
described herein. This described basic configuration is illus-
trated in FIG. 7 by those components within dashed line 701.

Computing device 700 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between the basic configuration 701 and any
required devices and interfaces. For example, a bus/interface
controller 740 may be used to facilitate communications
between the basic configuration 701 and one or more data
storage devices 750 via a storage interface bus 741. The data
storage devices 750 may be removable storage devices 751,
non-removable storage devices 752, or a combination
thereof. Examples of removable storage and non-removable
storage devices include magnetic disk devices such as flexible
disk drives and hard-disk drives (HDD), optical disk drives
such as compact disk (CD) drives or digital versatile disk
(DVD) drives, solid state drives (SSD), and tape drives to
name a few. Example computer storage media may include
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information, such as computer readable instructions, data
structures, program modules, or other data.

System memory 720, removable storage 751 and non-
removable storage 752 are all examples of computer storage
media. Computer storage media includes, but is not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which may be used to store the desired information
and which may be accessed by computing device 700. Any
such computer storage media may be part of device 700.

Computing device 700 may also include an interface bus
742 for facilitating communication from various interface
devices (e.g., output interfaces, peripheral interfaces, and
communication interfaces) to the basic configuration 701 via
the bus/interface controller 740. Example output interfaces
760 may include a graphics processing unit 761 and an audio
processing unit 762, which may be configured to communi-
cate to various external devices such as a display or speakers
via one or more A/V ports 763. Example peripheral interfaces
770 may include a serial interface controller 771 or a parallel
interface controller 772, which may be configured to commu-
nicate with external devices such as input devices (e.g., key-
board, mouse, pen, voice input device, touch input device,
etc.) or other peripheral devices (e.g., printer, scanner, etc.)
via one or more 1/O ports 773. An example communication
interface 780 includes a network controller 781, which may
be arranged to facilitate communications with one or more
other computing devices 790 over a network communication
via one or more communication ports 782. A communication
connection is one example of a communication media. Com-
munication media may typically be embodied by computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as a carrier wave or
other transport mechanism, and may include any information
delivery media. A “modulated data signal” may be a signal
that has one or more of its characteristics set or changed in
such a manner as to encode information in the signal. By way
of example, and not limitation, communication media may
include wired media such as a wired network or direct-wired

US 9,189,271 B2

19

connection, and wireless media such as acoustic, radio fre-
quency (RF), infrared (IR) and other wireless media. The
term computer readable media as used herein may include
both storage media and communication media.

Computing device 700 may be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-
sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that includes any of the above functions. Com-
puting device 700 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations. In addition, computing device 700
may beimplemented as part of a wireless base station or other
wireless system or device.

Some portions of the foregoing detailed description are
presented in terms of algorithms or symbolic representations
of operations on data bits or binary digital signals stored
within a computing system memory, such as a computer
memory. These algorithmic descriptions or representations
are examples of techniques used by those of ordinary skill in
the data processing arts to convey the substance of their work
to others skilled in the art. An algorithm is here, and generally,
is considered to be a self-consistent sequence of operations or
similar processing leading to a desired result. In this context,
operations or processing involve physical manipulation of
physical quantities. Typically, although not necessarily, such
quantities may take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared or
otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to such
signals as bits, data, values, elements, symbols, characters,
terms, numbers, numerals or the like. It should be understood,
however, that all of these and similar terms are to be associ-
ated with appropriate physical quantities and are merely con-
venient labels. Unless specifically stated otherwise, as appar-
ent from the following discussion, it is appreciated that
throughout this specification discussions utilizing terms such
as “processing,” “computing,” “calculating,” “determining”
or the like refer to actions or processes of a computing device,
that manipulates or transforms data represented as physical
electronic or magnetic quantities within memories, registers,
or other information storage devices, transmission devices, or
display devices of the computing device.

Claimed subject matter is not limited in scope to the par-
ticular implementations described herein. For example, some
implementations may be in hardware, such as employed to
operate on a device or combination of devices, for example,
whereas other implementations may be in software and/or
firmware. Likewise, although claimed subject matter is not
limited in scope in this respect, some implementations may
include one or more articles, such as a signal bearing medium,
a storage medium and/or storage media. This storage media,
such as CD-ROMs, computer disks, flash memory, or the like,
for example, may have instructions stored thereon, that, when
executed by a computing device, such as a computing system,
computing platform, or other system, for example, may result
in execution of a processor in accordance with claimed sub-
ject matter, such as one of the implementations previously
described, for example. As one possibility, a computing
device may include one or more processing units or proces-
sors, one or more input/output devices, such as a display, a
keyboard and/or a mouse, and one or more memories, such as
static random access memory, dynamic random access
memory, flash memory, and/or a hard drive.

There is little distinction left between hardware and soft-
ware implementations of aspects of systems; the use of hard-

2 <

10

15

20

25

30

35

40

45

50

55

60

65

20

ware or software is generally (but not always, in that in certain
contexts the choice between hardware and software can
become significant) a design choice representing cost vs.
efficiency tradeoffs. There are various vehicles by which pro-
cesses and/or systems and/or other technologies described
herein can be effected (e.g., hardware, software, and/or firm-
ware), and that the preferred vehicle will vary with the context
in which the processes and/or systems and/or other technolo-
gies are deployed. For example, if an implementer determines
that speed and accuracy are paramount, the implementer may
opt for a mainly hardware and/or firmware vehicle; if flex-
ibility is paramount, the implementer may opt for a mainly
software implementation; or, yet again alternatively, the
implementer may opt for some combination of hardware,
software, and/or firmware.

The foregoing detailed description has set forth various
embodiments of the devices and/or processes via the use of
block diagrams, flowcharts, and/or examples. Insofar as such
block diagrams, flowcharts, and/or examples contain one or
more functions and/or operations, it will be understood by
those within the art that each function and/or operation within
such block diagrams, flowcharts, or examples can be imple-
mented, individually and/or collectively, by a wide range of
hardware, software, firmware, or virtually any combination
thereof. In one embodiment, several portions of the subject
matter described herein may be implemented via Application
Specific Integrated Circuits (ASICs), Field Programmable
Gate Arrays (FPGAs), digital signal processors (DSPs), or
other integrated formats. However, those skilled in the art will
recognize that some aspects of the embodiments disclosed
herein, in whole or in part, can be equivalently implemented
in integrated circuits, as one or more computer programs
running on one or more computers (e.g., as one or more
programs running on one or more computer systems), as one
Or more programs running on one or more processors (e.g., as
one or more programs running on one or more Microproces-
sors), as firmware, or as virtually any combination thereof,
and that designing the circuitry and/or writing the code for the
software and/or firmware would be well within the skill of
one of skill in the art in light of this disclosure. In addition,
those skilled in the art will appreciate that the mechanisms of
the subject matter described herein are capable of being dis-
tributed as a program product in a variety of forms, and that an
illustrative embodiment of the subject matter described
herein applies regardless of the particular type of signal bear-
ing medium used to actually carry out the distribution.
Examples of a signal bearing medium include, but are not
limited to, the following: a recordable type medium such as a
flexible disk, a hard disk drive (HDD), a Compact Disc (CD),
a Digital Versatile Disk (DVD), a digital tape, a computer
memory, etc.; and a transmission type medium such as a
digital and/or an analog communication medium (e.g., a fiber
optic cable, a waveguide, a wired communications link, a
wireless communication link, etc.).

Those skilled in the art will recognize that it is common
within the art to describe devices and/or processes in the
fashion set forth herein, and thereafter use engineering prac-
tices to integrate such described devices and/or processes into
data processing systems. That is, at least a portion of the
devices and/or processes described herein can be integrated
into a data processing system via a reasonable amount of
experimentation. Those having skill in the art will recognize
that a typical data processing system generally includes one
or more of a system unit housing, a video display device, a
memory such as volatile and non-volatile memory, proces-
sors such as microprocessors and digital signal processors,
computational entities such as operating systems, drivers,

US 9,189,271 B2

21

graphical user interfaces, and applications programs, one or
more interaction devices, such as a touch pad or screen,
and/or control systems including feedback loops and control
motors (e.g., feedback for sensing position and/or velocity;
control motors for moving and/or adjusting components and/
or quantities). A typical data processing system may be
implemented utilizing any suitable commercially available
components, such as those typically found in data computing/
communication and/or network computing/communication
systems.

The herein described subject matter sometimes illustrates
different components contained within, or connected with,
different other components. It is to be understood that such
depicted architectures are merely exemplary, and that in fact
many other architectures can be implemented which achieve
the same functionality. In a conceptual sense, any arrange-
ment of components to achieve the same functionality is
effectively “associated” such that the desired functionality is
achieved. Hence, any two components herein combined to
achieve a particular functionality can be seen as “associated
with” each other such that the desired functionality is
achieved, irrespective of architectures or intermedial compo-
nents. Likewise, any two components so associated can also
be viewed as being “operably connected”, or “operably
coupled”, to each other to achieve the desired functionality,
and any two components capable of being so associated can
also be viewed as being “operably couplable”, to each otherto
achieve the desired functionality. Specific examples of oper-
ably couplable include but are not limited to physically mate-
able and/or physically interacting components and/or wire-
lessly interactable and/or wirelessly interacting components
and/or logically interacting and/or logically interactable com-
ponents.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

It will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may contain usage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to inventions containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should typically be interpreted to mean “at least one” or “one
or more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should typically be interpreted to mean at least the
recited number (e.g., the bare recitation of “two recitations,”

10

15

20

25

30

35

40

45

55

60

65

22

without other modifiers, typically means at least two recita-
tions, or two or more recitations). Furthermore, in those
instances where a convention analogous to “at least one of A,
B, and C, etc.” is used, in general such a construction is
intended in the sense one having skill in the art would under-
stand the convention (e.g., “a system having at least one of A,
B, and C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
In those instances where a convention analogous to “at least
one of A, B, or C, etc.” is used, in general such a construction
is intended in the sense one having skill in the art would
understand the convention (e.g., “a system having at least one
of'A, B, or C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
It will be further understood by those within the art that
virtually any disjunctive word and/or phrase presenting two
or more alternative terms, whether in the description, claims,
or drawings, should be understood to contemplate the possi-
bilities of including one of the terms, either of the terms, or
both terms. For example, the phrase “A or B” will be under-
stood to include the possibilities of “A” or “B” or “A and B.”

Reference in the specification to “an implementation,”
“one implementation,” “some implementations,” or “other
implementations” may mean that a particular feature, struc-
ture, or characteristic described in connection with one or
more implementations may be included in at least some
implementations, but not necessarily in all implementations.
The various appearances of “an implementation,” “one
implementation,” or “some implementations” in the preced-
ing description are not necessarily all referring to the same
implementations.

While certain exemplary techniques have been described
and shown herein using various methods and systems, it
should be understood by those skilled in the art that various
other modifications may be made, and equivalents may be
substituted, without departing from claimed subject matter.
Additionally, many modifications may be made to adapt a
particular situation to the teachings of claimed subject matter
without departing from the central concept described herein.
Therefore, it is intended that claimed subject matter not be
limited to the particular examples disclosed, but that such
claimed subject matter also may include all implementations
falling within the scope of the appended claims, and equiva-
lents thereof.

What is claimed:

1. A computer implemented method to transfer operation
from an origin virtual machine to a destination virtual
machine, comprising:

identifying, from uncompiled code, delta data comprising

uses of dynamic memory on the origin virtual machine
including at least one of variable declarations, procedure
calls and procedure returns;
launching a destination executable on a destination virtual
machine while the origin virtual machine continues to
execute an origin executable, wherein the destination
virtual machine has different characteristics from the
origin virtual machine;
transferring persistent state data from the origin virtual
machine to the destination virtual machine;

transferring delta data from a delta queue associated with
the origin virtual machine to the destination virtual
machine while the origin virtual machine continues to
execute the origin executable; and

US 9,189,271 B2

23

switching operation from the origin virtual machine to the
destination virtual machine when the launching of the
destination executable has been completed and the delta
queue is empty,

wherein transferring the delta data further comprises:

gathering past delta data from the delta queue associated
with the origin virtual machine;

locating an origin variable read location by looking up
the gathered past delta data via an origin pointer
index;

determining a destination write location by referring
through a destination pointer index based at least in
part on the located origin variable read location; and

writing a memory state in destination memory based at
least in part on the destination write location.

2. The method of claim 1, wherein the launching of the
destination executable on the destination virtual machine
comprises running the destination executable with an initially
empty memory to declare variables and determine memory
locations associated with the declared variables.

3. The method of claim 1, wherein transferring the delta
data further comprises transferring the delta data from the
origin virtual machine to the destination virtual machine
based at least in part on an origin pointer index, wherein the
origin pointer index comprises a plurality of persistent point-
ers associated with corresponding origin variables, wherein
the plurality of persistent pointers indicate where correspond-
ing origin variable pointers are located in the origin execut-
able, wherein the origin variable pointers indicate where cor-
responding origin variables are located in an origin memory.

4. The method of claim 1, wherein transferring the delta
data further comprises transferring the delta data from the
origin virtual machine to the destination virtual machine
based at least in part on a destination pointer index, wherein
the destination pointer index comprises a plurality of persis-
tent pointers associated with corresponding destination vari-
ables, wherein the plurality of persistent pointers indicate
where corresponding destination variable pointers are located
in the destination executable, wherein the destination variable
pointers indicate where corresponding destination variables
are located in a destination memory.

5. The method of claim 1, wherein transferring the delta
data further comprises:

gathering past delta data from the delta queue associated

with the origin virtual machine;

locating an origin variable read location by looking up the

gathered past delta data via an origin pointer index,
wherein the origin pointer index comprises a plurality of
persistent pointers associated with corresponding origin
variables, wherein the plurality of persistent pointers
indicate where corresponding origin variable pointers
are located in the origin executable, wherein the origin
variable pointers indicate where corresponding origin
variables are located in an origin memory;

determining a destination write location by referring

through a destination pointer index based at least in part
on the origin variable read location, wherein the desti-
nation pointer index comprises a plurality of persistent
pointers associated with corresponding destination vari-
ables, wherein the plurality of persistent pointers indi-
cate where corresponding destination variable pointers
are located in the destination executable, wherein the
destination variable pointers indicate the destination
write location where corresponding destination vari-
ables are located in a destination memory; and

writing a memory state in destination memory based at

least in part on the destination write location.

10

15

20

25

30

35

40

45

50

55

60

65

24

6. The method of claim 1, wherein switching operation
from the origin virtual machine to the destination virtual
machine comprises switching operation from the origin vir-
tual machine to the destination virtual machine when the
launching of the destination executable has been completed,
the delta queue is empty, and an execution address for the
destination executable is associated with one of a plurality of
bookmark pointers in the destination pointer index; and

wherein the plurality of bookmark pointers in the destina-

tion pointer index are associated with individual points
within the destination executable designated as logical
points to switch to the destination virtual machine.

7. The method of claim 1, wherein transferring the delta
data further comprises:

transferring the delta data from the origin virtual machine

to the destination virtual machine based at least in part
on an origin pointer index and a destination pointer
index,

wherein the origin pointer index comprises a plurality of

persistent pointers associated with corresponding origin
variables, wherein the plurality of persistent pointers
indicate where corresponding origin variable pointers
are located in the origin executable, wherein the origin
variable pointers indicate where corresponding origin
variables are located in an origin memory,

wherein the destination pointer index comprises a plurality

of persistent pointers associated with corresponding
destination variables, wherein the plurality of persistent
pointers indicate where corresponding destination vari-
able pointers are located in the destination executable,
wherein the destination variable pointers indicate where
corresponding destination variables are located in a des-
tination memory, and

wherein the destination pointer index comprises a plurality

of bookmark pointers, wherein the plurality of book-
mark pointers are associated with individual points
within the destination executable designated as logical
points to switch to the destination virtual machine.

8. The method of claim 1, wherein transferring the delta
data further comprises updating an execution reference value
when the delta data is associated with an execution reference,
wherein the execution reference comprises one or more of a
procedure location within the destination executable, a return
location within the destination executable, and/or a return
register from procedures.

9. The method of claim 1, further comprising:

running the origin virtual machine and the destination vir-

tual machine in parallel with duplicate inputs, wherein
the destination virtual machine comprises a just-in-
time-type compiler; and

comparing output from the origin virtual machine and the

destination virtual machine based at least in part on the
duplicate inputs prior to switching operation from the
origin virtual machine to the destination virtual
machine.

10. The method of claim 1, wherein different characteris-
tics comprise one or more of a memory capacity-type char-
acteristic, a processing capacity-type characteristic, an
address-type characteristic, an operating system-type charac-
teristic, and/or an application programming interface-type
characteristic.

11. A computing device, comprising:

a processor;

a non-transitory computer readable medium comprising

logic instructions which, when executed by the proces-
sor, configure the processor to:

US 9,189,271 B2

25

identify, from uncompiled code, delta data comprising
uses of dynamic memory on an origin virtual machine
including at least one of variable declarations, proce-
dure calls and procedure returns;

generate an origin pointer index associated with an ori-
gin executable, wherein the origin executable is con-
figured to be executed on the origin virtual machine;

generate a destination pointer index associated with a
destination executable, wherein the destination
executable is configured to be executed on a destina-
tion virtual machine, wherein the destination virtual
machine has different characteristics from the origin
virtual machine;

transfer persistent state data from the origin virtual
machine to the destination virtual machine; and

transfer delta data from a delta queue associated with the
origin virtual machine to the destination virtual
machine while the origin virtual machine continues to
execute the origin executable based at least in part on
the origin pointer index and the destination pointer
index, wherein the transfer of the delta data further
comprises:

gather past delta data from the delta queue associated
with the origin virtual machine;

locate an origin variable read location by looking up the
gathered past delta data in the origin pointer index;

determine a destination write location by referring
through the destination pointer index based at least in
art on the origin variable read location; and

write a memory state in destination memory based at
least in part on the destination write location.

12. The computing device of claim 11, wherein the origin
pointer index comprises a plurality of persistent pointers
associated with corresponding origin variables, wherein the
plurality of persistent pointers indicate where corresponding
origin variable pointers are located in the origin executable,
wherein the origin variable pointers indicate where corre-
sponding origin variables are located in an origin memory.

13. The computing device of claim 11, wherein the desti-
nation pointer index comprises a plurality of persistent point-
ers associated with corresponding destination variables,
wherein the plurality of persistent pointers indicate where
corresponding destination variable pointers are located in the
destination executable, wherein the destination variable
pointers indicate where corresponding destination variables
are located in a destination memory.

14. The computing device of claim 11, wherein the transfer
of'the delta data via the fourth module further comprises the
fourth module being configured to:

gather past delta data from the delta queue associated with

the origin virtual machine;

locate an origin variable read location by looking up the

gathered past delta data in the origin pointer index,
wherein the origin pointer index comprises a plurality of
persistent pointers associated with corresponding origin
variables, wherein the plurality of persistent pointers
indicate where corresponding origin variable pointers
are located in the origin executable, wherein the origin
variable pointers indicate where corresponding origin
variables are located in an origin memory;

determine a destination write location by referring through

the destination pointer index based at least in part on the
origin variable read location, wherein the destination
pointer index comprises a plurality of persistent pointers
associated with corresponding destination variables,
wherein the plurality of persistent pointers indicate
where corresponding destination variable pointers are

20

25

35

40

45

55

60

26

located in the destination executable, wherein the desti-
nation variable pointers indicate the destination write
location where corresponding destination variables are
located in a destination memory; and
write a memory state in destination memory based at least
in part on the destination write location.
15. The computing device of claim 11, wherein the transfer
of'the delta data via the fourth module further comprises the
fourth module being configured to transfer the delta data from
the origin virtual machine to the destination virtual machine
based at least in part on a destination pointer index, wherein
the destination pointer index comprises a plurality of book-
mark pointers, wherein the plurality of bookmark pointers are
associated with individual points within the destination
executable designated as logical points to switch to the des-
tination virtual machine.
16. The computing device of claim 11,
wherein the origin pointer index comprises a plurality of
persistent pointers associated with corresponding origin
variables, wherein the plurality of persistent pointers
indicate where corresponding origin variable pointers
are located in the origin executable, wherein the origin
variable pointers indicate where corresponding origin
variables are located in an origin memory,
wherein the destination pointer index comprises a plurality
of persistent pointers associated with corresponding
destination variables, wherein the plurality of persistent
pointers indicate where corresponding destination vari-
able pointers are located in the destination executable,
wherein the destination variable pointers indicate where
corresponding destination variables are located in a des-
tination memory, and
wherein the destination pointer index comprises a plurality
of bookmark pointers, wherein the plurality of book-
mark pointers are associated with individual points
within the destination executable designated as logical
points to switch to the destination virtual machine.
17. The computing device of claim 11, wherein different
characteristics comprise one or more of a memory capacity-
type characteristic, a processing capacity-type characteristic,
an address-type characteristic, an operating system-type
characteristic, and/or an application programming interface-
type characteristic.
18. An article comprising:
a non-transitory computer readable medium comprising
machine-readable instructions stored thereon, which, if
executed by one or more processors, operatively enable
a computing device to:
identify, from uncompiled code, delta data comprising
uses of dynamic memory on an origin virtual machine
including at least one of variable declarations, proce-
dure calls and procedure returns;

launch a destination executable on a destination virtual
machine while the origin virtual machine continues to
execute an origin executable, wherein the destination
virtual machine has different characteristics from the
origin virtual machine;

transfer persistent state data from the origin virtual
machine to the destination virtual machine;

transfer delta data from a delta queue associated with the
origin virtual machine to the destination virtual
machine while the origin virtual machine continues to
execute the origin executable; and

switch from the origin virtual machine to the destination
virtual machine when the launching of the destination

US 9,189,271 B2
27

executable has been completed and the delta queue is
empty, wherein transferring the delta data further
comprises:

gathering past delta data from the delta queue associated
with the origin virtual machine; 5

locating an origin variable read location by looking up
the gathered past delta data via an origin pointer
index; and

determining a destination write location by referring
through a destination pointer index based at least in 10
part on the located origin variable read location; and

writing a memory state in destination memory based at
least in part on the destination write location.

19. The article of claim 18, wherein the launch of the
destination executable on the destination virtual machine 15
comprises running the destination executable with an initially
empty memory to declare variables and determine memory
locations associated with the declared variables.

#* #* #* #* #*

28

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,189,271 B2 Page 1of1
APPLICATION NO. 1 13/497529

DATED : November 17, 2015

INVENTOR(S) : Kruglick

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page, in item (73), under “Assignee”, in Column 1, Line 1, delete “Development.” and insert
-- Development --, therefor.

In the Specification
In Column 1, Line 11, delete “§371” and insert -- § 371 --, therefor.
In the Claims

In Column 25, Line 29, in Claim 11, delete “art” and insert -- part --, therefor.

Signed and Sealed this
Second Day of August, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

